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Some annular disc inclusion problems in elasticity 

v’qr, 8,z) = 0; V4(r, 8,z) = 0 

where 

V’ = V2V2 

and 

a2 1 a 1 a2 a2 
v2=;i;l+;;i;+7;iii2+s 
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(1) 

(2) 

is Laplace’s operator referred to the cylindrical polar coordinate system. 
The components of the displacement vector u and the Cauchy stress tensor (I referred to 

the cylindrical polar coordinate system can be expressed in terms of the derivatives of Cp and Y. 
We have 

2Gu, = -g+;g (34 

2Gue= -;=- ar 
1 1  TD 3  Tr -0.1 3  T2@u, 

ar have 
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ii) a rigid body translation S in the + ve z-direction, (ii) a rigid body rotation fI about the v-axis, 
(iii) a rigid body rotation o about z-axis and (iv) a rotation free lateral translation A in the 
x-direction. By examining the mode of deformation for each specific problem it can be shown 
that the embedded inclusion imposes certain symmetry properties in the displacements and 
stresses, in the infinite space, about the plane z = 0. We may therefore restrict the analysis to a 
single halfspace region in which the plane L = O+ is subjected to appropriate mixed boundary 
conditions. For convenience, we shall focus the attention on the halfspace region z 20. The 
positive superscript denotes this case. The relevant boundary conditions are summarized. 

(i) For rhe rigid body translation in the z-direction 

u,( r, 0') = 0; r 2: 0 (5a) 

u,(r,0+)=6;bsrha (5bl 

(W 

u,(r,O+)=O;Ocrcb. (54 

(ii) For the rigid body ro~nrion about the y-axis 

I&, 8,O’) = 0; r 52 0 (64 

u& 0.0’) = 0; r 2 0 (W 

(W 

cr&,&O+)=O; acrea 64 

uJr,B,O+)=O;OcrCb. (eel 

(iii) For the rigid body rofation about the z-axis 

u&, 40’) = or; b s r s a (74 

a,,(r,fl,O+)=O;aCrCm G’b) 

q&, e,O+)= 0;O < rC b. UC) 

(iv) For the rigid body translation along the x-direction 

u,(r, e, 0') = 0; r z 0 @aI 

u,(r,8,0+)=6cose;bsrso (gb) 

u,(r, e,O+) = -SsinB;bsrs;a 03~) 

(gd) 

(ge) 

o,costJ-oe,sinO=O;Ocrcb. (gf) 

The boundary conditions (gd), (8e) and (Sf) relate to the traction vectors which act on the plane 
z = 0’ along the y and x directions, respectively. 
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4. TRIPLE INTEGRAL 
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(ii) For the rigid rotation of the annular disc inclusion about the y-axis we have 

H,[t-‘R2([); T] = 0; 0 < r c b 

i-l,@-‘R,(& r] = 0; a < r < 2. 

(iii) For the rigid rotation of the annular disc inclusion about the z-axis we have 

H!&(t); r] = 0; 0 c I < b 

H&f-‘R&); r] = or; b ?j r 5 a 

H,[R&); rJ = 0; a C r C 01. 

(164 

WI 

(1k) 

(iv) For the lateral translation of the annular disc inclusion along the x-direction we have 

HI&-‘R&); r] = -‘H; b 5 r s a Wb) 

H,[R&); r] = 0; a < r < 00. (17d 

The sets of triple integral equations defined by (14)-(17) can 0; 0 ;  d e f i n e d  
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The four integral equations (35)-(38) can be inverted to give 

Substituting the 
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