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SUMMARY 

The problem of the axial loading of a rigid disk-shaped anchor plate embedded in an isotropic elastic medium 
of infinite extent is examined. At the boundary of the disk anchor plate the elastic medium contains a cracked 
region of finite extent. The presence of the cracked region decreases the elastic stiffness of the anchor plate. 
The mathematical formulation of the problem is developed, and a numerical scheme is presented which can 
be used to solve the resulting coupled integral equations. The numerical technique is used to evaluate the 
results, which illustrate the manner in which the elastic stiffness of the anchor plate is influenced by the extent 
of cracking. Similar results are developed for the flaw shearing mode stress intensity factor at the external 
boundary of the cracked region. 

INTRODUCTION 

The class of problems which deal with the loading of plate shaped objects embedded in elastic 
media provides a useful basis for the modelling of the short-term or working load range 
stiffnesses of anchor plates. A number of researchers have investigated a variety of elastostatic 
problems involving anchor plates in which account is taken of complete bonding or partial 
debonding at the anchor platelelastic medium interface, flexibility of the anchor plate, transverse 
isotropy of the soil medium, geometrical features of the anchor plate and the influence of the 
boundaries (see e.g. References 1-10). Accounts of the elastostatic analysis of disk-shaped anchor 
problems are given in References 11 and 12. 
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Table 1. Axial stiffness P/8GAa of a rigid circular 
punch bonded to an isotropic elastic half-space 

Hilbert Hankel 
V problem transform 

approach approach 

0 0.549 0.546 
0.1 0.597 0.596 
0.2 0.657 0.658 
0.3 0.736 0.731 
0.4 0.84 1 0.842 
0-5 1 .ooo 1 .ooo 

equation formulation of the axially loaded disk anchor problem in the presence of boundary 
cracking. The mathematical analysis of the mixed boundary value problem yields a system of three 
coupled integral equations. These in turn are reduced to a pair of coupled Fredholm integral 
equations of the second kind. These are solved in a numerical fashion to generate the 
load-displacement relationship for the disk anchor. The numerical results illustrate the manner in 
which the extent of cracking influences the stiffness of the disk anchor. The numerical procedure 
can also be used to evaluate the flaw shearing mode (or mode 11) stress intensity factor at the outer 
boundary of the cracked region. Again, the numerical results illustrate the influence of the extent of 
cracking on the stress intensity factor at the crack boundary. 

FUNDAMENTAL EQUATIONS 

Since the anchor problem exhibits axial symmetry, it is convenient to use the method of solution 
which is based on the strain potential approach taken by Love.” It can be shown that the solution 
to the displacement equations of equilibrium can be expressed in terms of a single function CD (r, z )  
which satisfies the equation 

V2V2@(r, z )  = 0 (6) 
where 

a* 1 a a2 V2=-+--+- 
dr2 rdr az2 (7) 

is the axisymmetric form of Laplace’s operator in cylindrical polar co-ordinates. The displacement 
and stress components in the elastic medium may be evaluated in terms of the strain potential 0; 
we have 

a2Q 
2Gu, = 2( 1 - V)V% - ~ 

a z 2  
(9) 

and 
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where H,[R((); r ]  is the Hankel transform of order n defined by 

d5 H ,  
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Hl CM(5); rl =f3(r), b < r < (41) 
Making use of 
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, a < r < b  

Also, note that $*(t) may be expressed in terms of F , ,  F ,  and GT in the form 

1 2 1-2v uF,(u)du ' uF,(u)du $*(t)= 
(1 -2v)a n 3-4v n (uZ-u2)1/2 n o(a2-u2)'/2(t2--U2)'/2 
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(53) 

This completes the formal reduction of 



166 A. P. S .  SELVADURAI 

for the shear stresses in the elastic medium is 

By making use of (48) and (50), the result (60) may be expressed in the form 
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where the function ~ ( 5 ,  q )  is defined as 

167 

The expression for the axial stiffness of the anchor corresponding to equation (59) may now be 
written as 

P 2(1 -v )  
16GA- 3-4v 

Similarly, the flaw shearing mode stress intensity factor at the boundary of the cracked region, 
equation (63), may be written as 

A quadrature scheme of order N is used to solve the coupled system (65H66). The scheme is 
applied to the intervals [O, c] and [c, 11 separately. Therefore a matrix equation of order 2N is 
obtained, in the form 

[::: :::I [i] = [ -;] 
where the coefficient submatrices are obtained from equations (65) and (66). Upon solution, the 
results for the axial stiffness of the anchor and the stress intensity factor at the crack tip can be 
obtained via equations (68) and (69), respectively. The order of the quadrature scheme can be 
varied to ensure convergence of the results to limiting values. In the numerical treatments 
presented here, we employ N = 16 and v ~(O,0 .5 ) .  The techniques adopted for the numerical 
solution of the coupled integral equations are sufficiently accurate for the purposes of evaluation 
of the load-displacement relationship and the stress intensity factor defined by equations (68) and 
(69). Other numerical procedures that can be adopted for the solution of integral equations are thatu-3 O t h e r  and 
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Figure 3. Variation of the flaw shearing mode stress intensity factor at the boundary of the cracked region 

very accurately with the exact closed-form solutions cited in equations (71) and (72). As is evident, 
in the limit of material incompressibility the extent of cracking has no influence on the axial 
stiffness of the disk anchor. The maximum influence of the cracking on the axial stiffness of the 
anchor occurs when v = 0. In this case the elastostatic stiffness can be reduced by as much as 
approximately 25 per cent of the stiffness for the uncracked case. However, for most naturally 
occurring soils and rocks v E (0.2,05). In this case the reduction in stiffness due to the boundary 
cracking is much smaller and may be considered to be of little or no practical significance. Figure 3 
illustrates the manner in which the flaw shearing mode stress intensity factor at the boundary of 
the crack is influenced by the extent of cracking. Again, in the limit of material incompressibility, 
the flaw shearing mode stress intensity factor at the boundary of the crack reduces to zero for all 
choices of a/bE(O, 1). 
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