鶹AV

Event

Andre Wibisono (University of Wisconsin-Madison)

Monday, October 17, 2016 15:00to16:00
Burnside Hall Room 920, 805 rue Sherbrooke Ouest, Montreal, QC, H3A 0B9, CA

A variational perspective for accelerated methods in optimization
Abstract:
Accelerated gradient methods play a central role in optimization, achieving optimal rates in many settings. While many generalizations and extensions of Nesterov's original acceleration method have been proposed, it is not yet clear what is the natural scope of the acceleration concept. In this work, we study accelerated methods from a continuous-time perspective. We show that there is a Lagrangian functional that we call the “Bregman Lagrangian” which generates a large class of accelerated methods in continuous time, including (but not limited to) accelerated gradient descent, its non-Euclidean extension, and accelerated higher-order gradient methods. We show that the continuous-time limit of all of these methods correspond to traveling the same curve in spacetime at different speeds. From this perspective, Nesterov's technique and many of its generalizations can be viewed as a systematic way to go from the continuous-time curves generated by the Bregman Lagrangian to a family of discrete-time accelerated algorithms.

Follow us on

Back to top