Â鶹AV

Nouvelles

Scruter les publicités en ligne pour déceler les cas de traite de personnes

Les forces de l’ordre pourraient compter sur un algorithme dans leur lutte contre des activités organisées
±Ê³Ü²ú±ô¾±Ã©: 27 April 2021

Des chercheurs de l’Université Â鶹AV et de l’Université Carnegie-Mellon (CMU) ont conçu un algorithme leur permettant de reconnaître les signes d’activité de traite de personnes dans les annonces publicitaires de services d’escorte en ligne. La publicité est le moyen technologique le plus utilisé dans les cas de traite de personnes.

« La plupart des victimes font l’objet d’annonces en ligne et n’ont aucun contrôle sur les messages publiés par leur proxénète », explique Reihaneh Rabbany, professeure adjointe à l’École d’informatique de Â鶹AV et titulaire d’une chaire en IA Canada-CIFAR. Comme un proxénète exerce habituellement son emprise sur quatre à six personnes, on retrouve sur les sites un certain nombre d’annonces semblables, dont on peut se servir pour déceler une activité organisée.

« L’algorithme InfoShield peut rassembler des millions d’annonces et repérer les similitudes », ajoute Christos Faloutsos, professeur Fredkin à l’École d’informatique de la CMU, où il est responsable du projet. « Si les annonces ont beaucoup d’éléments en commun, il est fort probable qu’elles cachent une activité douteuse. » Cet algorithme pourrait aiguiller les forces de l’ordre dans leurs enquêtes et les aider à reconnaître les trafiquants et leurs victimes.

L’Organisation internationale du travail estime à 24,9 millions le nombre de personnes soumises au travail forcé. Parmi elles, 55 % sont des femmes et des filles exploitées dans l’industrie du sexe. Depuis dix ans, on observe une augmentation des cas de traite de personnes au Canada, ce qui a incité le gouvernement canadien – en collaboration avec la Gendarmerie royale du Canada – à lancer la Stratégie nationale de lutte contre la traite des personnes 2019-2024, qui insiste notamment sur l’importance des avancées technologiques et de la recherche. L’algorithme InfoShield est un pas dans la bonne direction.

« La traite de personnes est un problème de société grave et difficile à aborder, admettent Catalina Vajiac et Meng-Chieh Lee, auteurs principaux de l’étude. En recherchant les similitudes entre des annonces plutôt qu’en analysant des messages individuels, nous trouvons des groupes d’annonces qui pourraient nous mettre sur la piste d’une activité organisée et, fort probablement, de traite de personnes. »

Déceler les activités organisées dans les médias sociaux

Pour tester InfoShield, l’équipe l’a utilisé avec une série de publicités de services d’escorte parmi lesquelles des experts avaient déjà repéré des annonces liées à un trafic. Elle a constaté qu’InfoShield était l’algorithme le plus efficace et qu’il reconnaissait les annonces douteuses avec une précision de 85 %.

Les données utilisées pour les essais provenaient d’annonces réelles mises en ligne par des trafiquants de personnes. Comme l’équipe devait préserver la confidentialité de ces données sensibles afin de protéger les victimes, elle ne pouvait pas publier d’exemples d’activités ni de données, ce qui rendait impossible toute vérification par d’autres chercheurs. Pour contourner ce problème, l’équipe a voulu tester InfoShield à l’aide d’ensembles de données publiques ayant des caractéristiques recherchées par l’algorithme : du texte et des formulations similaires. Elle s’est tournée vers Twitter, où elle a trouvé une mine de textes créés par des bots et renfermant des similitudes.

« Les bots et les trolls publient souvent la même information de manière semblable, précise Reihaneh Rabbany. Comme pour les annonces pour la traite de personnes, le format des gazouillis créés par un bot est souvent le même, à quelques détails près, puisque la source est la même. Le but de l’algorithme est toujours de déceler une activité organisée ».

InfoShield a mieux fait que d’autres algorithmes évolués dans la détection de gazouillis produits par des bots. Catalina Vajiac dit avoir été surprise par ce résultat, étant donné que d’autres algorithmes tiennent compte d’indicateurs propres à Twitter, comme le nombre d’abonnés, de gazouillis partagés et de mentions ´³â€™a¾±³¾±ð, alors qu’InfoShield ne le fait pas. L’algorithme se fie uniquement au texte des gazouillis pour déterminer si un bot se cache derrière ou pas.

« Cela montre bien l’importance de l’analyse de textes dans la recherche de ce type d’organisation », affirme Catalina Vajiac.

L’Université Â鶹AV

Riche de 200 ans de découvertes et d’apprentissage, l’Université Â鶹AV se classe parmi les meilleures universités du Canada et du monde. Â鶹AV a pour mission de favoriser la création et la transmission du savoir en offrant la meilleure formation possible, en effectuant de la recherche et des travaux savants jugés excellents selon les normes internationales les plus rigoureuses, et en étant au service de la société. Elle exerce ses activités dans trois campus, 11 facultés et 13 écoles professionnelles et elle compte quelque 300 programmes d’études. Chaque année, l’Université accueille plus de 40 000 étudiants, dont au-delà de 30 % sont originaires de plus de 150 pays, et elle compte le plus haut pourcentage de doctorants parmi toutes les universités de recherche canadiennes. Près de 60 % de sa population étudiante parle le français.

Back to top